373 research outputs found

    Multifractal Network Generator

    Full text link
    We introduce a new approach to constructing networks with realistic features. Our method, in spite of its conceptual simplicity (it has only two parameters) is capable of generating a wide variety of network types with prescribed statistical properties, e.g., with degree- or clustering coefficient distributions of various, very different forms. In turn, these graphs can be used to test hypotheses, or, as models of actual data. The method is based on a mapping between suitably chosen singular measures defined on the unit square and sparse infinite networks. Such a mapping has the great potential of allowing for graph theoretical results for a variety of network topologies. The main idea of our approach is to go to the infinite limit of the singular measure and the size of the corresponding graph simultaneously. A very unique feature of this construction is that the complexity of the generated network is increasing with the size. We present analytic expressions derived from the parameters of the -- to be iterated-- initial generating measure for such major characteristics of graphs as their degree, clustering coefficient and assortativity coefficient distributions. The optimal parameters of the generating measure are determined from a simple simulated annealing process. Thus, the present work provides a tool for researchers from a variety of fields (such as biology, computer science, biology, or complex systems) enabling them to create a versatile model of their network data.Comment: Preprint. Final version appeared in PNAS

    Lower Bounds for On-line Interval Coloring with Vector and Cardinality Constraints

    Full text link
    We propose two strategies for Presenter in the on-line interval graph coloring games. Specifically, we consider a setting in which each interval is associated with a dd-dimensional vector of weights and the coloring needs to satisfy the dd-dimensional bandwidth constraint, and the kk-cardinality constraint. Such a variant was first introduced by Epstein and Levy and it is a natural model for resource-aware task scheduling with dd different shared resources where at most kk tasks can be scheduled simultaneously on a single machine. The first strategy forces any on-line interval coloring algorithm to use at least (5m3)dlogd+3(5m-3)\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of intervals. The second strategy forces any on-line interval coloring algorithm to use at least 5m2dlogd+3\lfloor\frac{5m}{2}\rfloor\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of unit intervals

    Maximizing the Probability of Delivery of Multipoint Relay Broadcast Protocol in Wireless Ad Hoc Networks with a Realistic Physical Layer

    Get PDF
    It is now commonly accepted that the unit disk graph used to model the physical layer in wireless networks does not reflect real radio transmissions, and that the lognormal shadowing model better suits to experimental simulations. Previous work on realistic scenarios focused on unicast, while broadcast requirements are fundamentally different and cannot be derived from unicast case. Therefore, broadcast protocols must be adapted in order to still be efficient under realistic assumptions. In this paper, we study the well-known multipoint relay protocol (MPR). In the latter, each node has to choose a set of neighbors to act as relays in order to cover the whole 2-hop neighborhood. We give experimental results showing that the original method provided to select the set of relays does not give good results with the realistic model. We also provide three new heuristics in replacement and their performances which demonstrate that they better suit to the considered model. The first one maximizes the probability of correct reception between the node and the considered relays multiplied by their coverage in the 2-hop neighborhood. The second one replaces the coverage by the average of the probabilities of correct reception between the considered neighbor and the 2-hop neighbors it covers. Finally, the third heuristic keeps the same concept as the second one, but tries to maximize the coverage level of the 2-hop neighborhood: 2-hop neighbors are still being considered as uncovered while their coverage level is not higher than a given coverage threshold, many neighbors may thus be selected to cover the same 2-hop neighbors

    Recommendation Subgraphs for Web Discovery

    Full text link
    Recommendations are central to the utility of many websites including YouTube, Quora as well as popular e-commerce stores. Such sites typically contain a set of recommendations on every product page that enables visitors to easily navigate the website. Choosing an appropriate set of recommendations at each page is one of the key features of backend engines that have been deployed at several e-commerce sites. Specifically at BloomReach, an engine consisting of several independent components analyzes and optimizes its clients' websites. This paper focuses on the structure optimizer component which improves the website navigation experience that enables the discovery of novel content. We begin by formalizing the concept of recommendations used for discovery. We formulate this as a natural graph optimization problem which in its simplest case, reduces to a bipartite matching problem. In practice, solving these matching problems requires superlinear time and is not scalable. Also, implementing simple algorithms is critical in practice because they are significantly easier to maintain in production. This motivated us to analyze three methods for solving the problem in increasing order of sophistication: a sampling algorithm, a greedy algorithm and a more involved partitioning based algorithm. We first theoretically analyze the performance of these three methods on random graph models characterizing when each method will yield a solution of sufficient quality and the parameter ranges when more sophistication is needed. We complement this by providing an empirical analysis of these algorithms on simulated and real-world production data. Our results confirm that it is not always necessary to implement complicated algorithms in the real-world and that very good practical results can be obtained by using heuristics that are backed by the confidence of concrete theoretical guarantees

    Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing

    Get PDF
    We consider sequences of graphs and define various notions of convergence related to these sequences: ``left convergence'' defined in terms of the densities of homomorphisms from small graphs into the graphs of the sequence, and ``right convergence'' defined in terms of the densities of homomorphisms from the graphs of the sequence into small graphs; and convergence in a suitably defined metric. In Part I of this series, we show that left convergence is equivalent to convergence in metric, both for simple graphs, and for graphs with nodeweights and edgeweights. One of the main steps here is the introduction of a cut-distance comparing graphs, not necessarily of the same size. We also show how these notions of convergence provide natural formulations of Szemeredi partitions, sampling and testing of large graphs.Comment: 57 pages. See also http://research.microsoft.com/~borgs/. This version differs from an earlier version from May 2006 in the organization of the sections, but is otherwise almost identica

    Dependence of ground state energy of classical n-vector spins on n

    Full text link
    We study the ground state energy E_G(n) of N classical n-vector spins with the hamiltonian H = - \sum_{i>j} J_ij S_i.S_j where S_i and S_j are n-vectors and the coupling constants J_ij are arbitrary. We prove that E_G(n) is independent of n for all n > n_{max}(N) = floor((sqrt(8N+1)-1) / 2) . We show that this bound is the best possible. We also derive an upper bound for E_G(m) in terms of E_G(n), for m<n. We obtain an upper bound on the frustration in the system, as measured by F(n), which is defined to be (\sum_{i>j} |J_ij| + E_G(n)) / (\sum_{i>j} |J_ij|). We describe a procedure for constructing a set of J_ij's such that an arbitrary given state, {S_i}, is the ground state.Comment: 6 pages, 2 figures, submitted to Physical Review

    A simulação do real organizacional: O método dos casos como ponte entre o conhecimento tácito e o académico

    Get PDF
    O desenvolvimento da ciência organizacional tem sido marcado pelo desdobramento de modas e modelos nas mais diversas áreas. O presente artigo reflecte sobre o seu papel, particularmente, por via dos estudos de caso. Sendo as escolas de negócios e de gestão um dos actores importantes na difusão destes modismos, o método dos casos, enquanto estratégia pedagógica, é entendido aqui como um importante veículo de coordenação entre a investigação científica organizacional e a sua realidade. Contribui para a aproximação entre os vários intervenientes neste processo (professores, alunos, gestores, líderes e empresários). Advoga-se a sua importância por estabelecer uma ponte entre a academia e a o mundo organizacional, entre o conhecimento teórico dos académicos e o conhecimento tácito dos agentes empresariais.The development of organizational science has been marked by the growth of models and fashions in different areas. The aim of this article is about it’s role, namely, by the hand of case studies. Business and management schools are one of important agents in models and fashions diffusion process. The case method, while pedagogic strategy, is an important vehicle of coordination between organizational scientific investigation and its reality. It contributes to different actors get close of each other (teachers, students, managers, leaders, business men). We address the relevance to build a bridge between the academic world and the organizational one, between the academic theoretical knowledge and tacit knowledge of organizational managers
    corecore